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Some Circular Decisions



Indicate the Color

What is the color of the shirt?




Did You Remember the Color?

What was the color of the shirt?




Spatial Identification of Sound

Testing a directional hearing aid

(1]

1
4 L1



Conversation Source

Where is the conversation coming from?




Predicting Weather

Which day will have the highest maximum temperature in Sydney?
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Assessing Personalities

What is this person's personality?
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The Circular Drift Diffusion Model (CDDM)

Given the parameters, CDDM predicts a distribution of angles and

reaction times
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JAGS Implementation

e We implemented the CDDM as a custom distribution in JAGS
e JAGS is a high-level scripting language for probabilistic generative
models (Plummer, 2003)

- allows for flexible and rapid model development, including
hierarchical and latent-mixture structures
- automates fully Bayesian inference via computational methods

e We conducted simulation studies and found good parameter
recovery even with small sample sizes (N = 80)
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JAGS Model Design Patterns

JAGS lets users add model assumptions/restrictions in concise code

e Likelihood function

y[time,1:2] ~ dcddm(delta[PERSON[time], DIFFICULTY[timel],
eta [PERSON[time], SPEED_ACCURACY[timel],
tO [PERSON [timel],
theta[time, (latent_state[time] + 1)])

e Prior distribution: latent mixture of angles

latent_state[time] ~ dbern(omega[PERSON[time], CUE_DEFLECT[time]])
theta[time,1] ~ dnorm (POSITION[timel, ... )
theta[time ,2] ~ dnorm (CUE_POSITION[time], ... )

e Hierarchical distribution: drift

for(dIdx in 1:nDifficulty){
mu_deltal[dIdx] ~ dnorm(0, 1) # Prior on conditional means
for(pIdx in 1:nParticipants){
log_deltal[pIdx, dIdx] ~ dnorm(mu_deltal[dIdx], tau_delta)
delta[pIdx,dIdx] = exp(log_deltal[pIdx, dIdx])



An Application



Kvam (2019) Task

e Perceptual study where participants produce orientation judgments
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Kvam (2019) Task

e Perceptual study where participants produce orientation judgments
e Participants had to indicate the average orientation of a sequence of
Gabor patches being presented to them on every trial
- task design included time pressure (speed vs. accuracy instructions)
and difficulty (variability of samples) manipulations
- cued and uncued trials, with different cue deflections

Cued
condition

Uncued
condition

Stimulus Response
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Resea questions

@ Are people more cautious when they are instructed to prioritize
accuracy over speed?
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Resea questions

@ Are people more cautious when they are instructed to prioritize
accuracy over speed?

® |s the speed of information processing less for more variable stimuli?

Do people get information less consistently from more variable
stimuli?

® Are there differences in being influenced by the cue for different cue
angles?
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Speed vs. Accuracy

e Are people more cautious when they are instructed to prioritize
accuracy over speed?
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Speed vs. Accuracy

e Are people more cautious when they are instructed to prioritize
accuracy over speed?

- test for an increase in the evidence threshold 7 in the accuracy
condition

A

2:0-“ “ “ ** ¢* ""

= accuracy
= speed

T T

5 6

Threshold (n)
1

Participant

e Accuracy thresholds are significantly different (and larger), with
Bayes factors above 1,000 for all but participant 3, who has a Bayes
factor favoring ‘different’ of 9 2



Speed of Information Processing

e Is the speed of information processing less for more variable stimuli?
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Speed of Information Processing

e Is the speed of information processing less for more variable stimuli?

- a decrease in the drift norm parameter ¢ as stimuli become more
difficult because of increased variability

% 44, e 0y 0,

g 3
b
‘D— 2
. m 15°
30°
45°
0
T T T T T T
1 2 3 4 5 6
Participant

e Ordering of ¢ generally shows greater difficulty with more variability

- participant 1 has lower ¢ than is expected for the easiest 15° stimuli
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of Information Processing

e Do people get information less consistently from more variable
stimuli?
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Consistency of Information Processing

e Do people get information less consistently from more variable
stimuli?
- measured by the trial-to-trial variability in the drift angle 6
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of Information Processing

e Do people get information less consistently from more variable
stimuli?
- measured by the trial-to-trial variability in the drift angle 6
- implemented hierarchically in our model with standard deviation 0,
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e Ordering shows less drift rate consistency as stimuli become more
difficult via increased variability
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Influence of Cues

e Are there differences in being influenced by the cue for different cue
angles?
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Influence of Cues

e Are there differences in being influenced by the cue for different cue
angles?
- measured by how often the cue angle determines the drift
- implemented as a hierarchical base-rate w;, over a trial-by-trial latent
mixture in our model
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e Participants mostly ignore the cue and there are no significant
differences in the base-rate for different (positive and negative) cue
angle displacements 29



Discussion




Name the color of the shirt? Who is talking?
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Name the color of the shirt? Who is talking?

In practice, speeded orientation responses are often recorded with a
discrete set of response options
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Future work: A Thurstonian extension
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Future work: A Thurstonian extension

Name the color of the shirt? Who is talking?
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A Likert extensio

Strongly Disagree Disagree Neutral Agree Strongly Agree

4 i
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Strongly Disagree Disagree Neutral Agree Strongly Agree
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