Drifting beyond Bayesics

A Bayesian Implementation of the Circular Drift Diffusion Model

Adriana F. Chávez De la Peña, Manuel Villarreal, Michael D. Lee, Joachim Vandekerckhove

University of California, Irvine

Some Circular Decisions

Indicate the Color

What is the color of the shirt?

Did You Remember the Color?

What was the color of the shirt?

Spatial Identification of Sound

Testing a directional hearing aid

Conversation Source

Where is the conversation coming from?

Predicting Weather

Which day will have the highest maximum temperature in Sydney?

Assessing Personalities

What is this person's personality?

• Smith (2016)'s extension of the drift diffusion model (Ratcliff, 1978) extends binary choice to speeded continuous decisions on a circle

- Smith (2016)'s extension of the drift diffusion model (Ratcliff, 1978) extends binary choice to speeded continuous decisions on a circle
- Parameters are
 - drift angle: direction of stimulus evidence
 - evidence threshold: criterion to be reached to make a decision
 - drift norm: speed of information processing
 - non-decision time: visual encoding and motor movement

- Smith (2016)'s extension of the drift diffusion model (Ratcliff, 1978)
 extends binary choice to speeded continuous decisions on a circle
- Parameters are
 - drift angle: direction of stimulus evidence
 - evidence threshold: criterion to be reached to make a decision
 - drift norm: speed of information processing
 - non-decision time: visual encoding and motor movement

Given the parameters, CDDM predicts a distribution of angles and reaction times

JAGS Implementation

• We implemented the CDDM as a custom distribution in JAGS

JAGS Implementation

- We implemented the CDDM as a custom distribution in JAGS
- JAGS is a high-level scripting language for probabilistic generative models (Plummer, 2003)
 - allows for flexible and rapid model development, including hierarchical and latent-mixture structures
 - automates fully Bayesian inference via computational methods

JAGS Implementation

- We implemented the CDDM as a custom distribution in JAGS
- JAGS is a high-level scripting language for probabilistic generative models (Plummer, 2003)
 - allows for flexible and rapid model development, including hierarchical and latent-mixture structures
 - automates fully Bayesian inference via computational methods
- \bullet We conducted simulation studies and found good parameter recovery even with small sample sizes (N=80)

JAGS lets users add model assumptions/restrictions in concise code

JAGS lets users add model assumptions/restrictions in concise code

Likelihood function

```
y[time,1:2] ~ dcddm(delta[PERSON[time], DIFFICULTY[time]],
eta[PERSON[time], SPEED_ACCURACY[time]],
t0[PERSON[time]],
theta[time, (latent_state[time] + 1)])
```

JAGS lets users add model assumptions/restrictions in concise code

Likelihood function

• Prior distribution: latent mixture of angles

```
latent_state[time] ~ dbern(omega[PERSON[time], CUE_DEFLECT[time]])
theta[time,1] ~ dnorm(POSITION[time], ... )
theta[time,2] ~ dnorm(CUE_POSITION[time], ... )
```

JAGS lets users add model assumptions/restrictions in concise code

Likelihood function

• Prior distribution: latent mixture of angles

```
latent_state[time] ~ dbern(omega[PERSON[time], CUE_DEFLECT[time]])
theta[time,1] ~ dnorm(POSITION[time], ... )
theta[time,2] ~ dnorm(CUE_POSITION[time], ... )
```

• Hierarchical distribution: drift

```
for(dIdx in 1:nDifficulty){
   mu_delta[dIdx] ~ dnorm(0, 1) # Prior on conditional means
   for(pIdx in 1:nParticipants){
      log_delta[pIdx, dIdx] ~ dnorm(mu_delta[dIdx], tau_delta)
      delta[pIdx,dIdx] = exp(log_delta[pIdx, dIdx])
   }
}
```

An Application

• Perceptual study where participants produce orientation judgments

- Perceptual study where participants produce orientation judgments
- Participants had to indicate the average orientation of a sequence of Gabor patches being presented to them on every trial

- Perceptual study where participants produce orientation judgments
- Participants had to indicate the average orientation of a sequence of Gabor patches being presented to them on every trial
 - task design included time pressure (speed vs. accuracy instructions) and difficulty (variability of samples) manipulations
 - cued and uncued trials, with different cue deflections

- Perceptual study where participants produce orientation judgments
- Participants had to indicate the average orientation of a sequence of Gabor patches being presented to them on every trial
 - task design included time pressure (speed vs. accuracy instructions)
 and difficulty (variability of samples) manipulations
 - cued and uncued trials, with different cue deflections

• Are people more cautious when they are instructed to prioritize accuracy over speed?

- Are people more cautious when they are instructed to prioritize accuracy over speed?
- 2 Is the speed of information processing less for more variable stimuli?

- Are people more cautious when they are instructed to prioritize accuracy over speed?
- 2 Is the speed of information processing less for more variable stimuli?
- Open people get information less consistently from more variable stimuli?

- Are people more cautious when they are instructed to prioritize accuracy over speed?
- 2 Is the speed of information processing less for more variable stimuli?
- Open people get information less consistently from more variable stimuli?
- Are there differences in being influenced by the cue for different cue angles?

• Are people more cautious when they are instructed to prioritize accuracy over speed?

- Are people more cautious when they are instructed to prioritize accuracy over speed?
 - test for an increase in the evidence threshold $\boldsymbol{\eta}$ in the accuracy condition

- Are people more cautious when they are instructed to prioritize accuracy over speed?
 - test for an increase in the evidence threshold $\boldsymbol{\eta}$ in the accuracy condition

- Are people more cautious when they are instructed to prioritize accuracy over speed?
 - test for an increase in the evidence threshold $\boldsymbol{\eta}$ in the accuracy condition

 Accuracy thresholds are significantly different (and larger), with Bayes factors above 1,000 for all but participant 3, who has a Bayes factor favoring 'different' of 9

• Is the speed of information processing less for more variable stimuli?

- Is the speed of information processing less for more variable stimuli?
 - a decrease in the drift norm parameter δ as stimuli become more difficult because of increased variability

- Is the speed of information processing less for more variable stimuli?
 - a decrease in the drift norm parameter δ as stimuli become more difficult because of increased variability

- Is the speed of information processing less for more variable stimuli?
 - a decrease in the drift norm parameter δ as stimuli become more difficult because of increased variability

- ullet Ordering of δ generally shows greater difficulty with more variability
 - participant 1 has lower δ than is expected for the easiest 15° stimuli

• Do people get information less consistently from more variable stimuli?

- Do people get information less consistently from more variable stimuli?
 - measured by the trial-to-trial variability in the drift angle $\boldsymbol{\theta}$

- Do people get information less consistently from more variable stimuli?
 - measured by the trial-to-trial variability in the drift angle θ
 - implemented hierarchically in our model with standard deviation $\theta_{ au}$

- Do people get information less consistently from more variable stimuli?
 - measured by the trial-to-trial variability in the drift angle θ
 - implemented hierarchically in our model with standard deviation $\theta_{ au}$

- Do people get information less consistently from more variable stimuli?
 - measured by the trial-to-trial variability in the drift angle θ
 - implemented hierarchically in our model with standard deviation $heta_{ au}$

 Ordering shows less drift rate consistency as stimuli become more difficult via increased variability

• Are there differences in being influenced by the cue for different cue angles?

- Are there differences in being influenced by the cue for different cue angles?
 - measured by how often the cue angle determines the drift

- Are there differences in being influenced by the cue for different cue angles?
 - measured by how often the cue angle determines the drift
 - implemented as a hierarchical base-rate $\omega_{ au}$ over a trial-by-trial latent mixture in our model

- Are there differences in being influenced by the cue for different cue angles?
 - measured by how often the cue angle determines the drift
 - implemented as a hierarchical base-rate $\omega_{ au}$ over a trial-by-trial latent mixture in our model

 Participants mostly ignore the cue and there are no significant differences in the base-rate for different (positive and negative) cue angle displacements

Discussion

Future work

Name the color of the shirt?

Who is talking?

Future work

Name the color of the shirt?

Who is talking?

In practice, speeded orientation responses are often recorded with a discrete set of response options

Future work: A Thurstonian extension

Name the color of the shirt?

Who is talking?

Future work: A Thurstonian extension

Name the color of the shirt?

Who is talking?

A Likert extension

A Likert extension

References

- Kvam, P. D. (2019). Modeling accuracy, response time, and bias in continuous orientation judgments. *Journal of experimental psychology: human perception and performance*, 45(3), 301.
- Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), *Proceedings of the 3rd international workshop on distributed statistical computing.* Vienna, Austria.
- Ratcliff, R. (1978). A theory of memory retrieval. *Psychological Review*, 85, 59–108.
- Smith, P. L. (2016). Diffusion theory of decision making in continuous report. *Psychological Review*, 123(4), 425.

Drifting beyond Bayesics

A Bayesian Implementation of the Circular Drift Diffusion Model

Adriana F. Chávez De la Peña, Manuel Villarreal, Michael D. Lee, Joachim Vandekerckhove

University of California, Irvine

Recovery Study for Cartesian Implementation

Recovery Study for Polar Implementation

