A Bayesian Implementation of the Circular Drift Diffusion Model

MathPsych, 2023

Adriana F. Chávez De la Peña, Manuel Villarreal, Michael D. Lee and Joachim Vandekerckhove

University of California, Irvine

Overview

• The Circular Drift Diffusion Model (CDDM) is an extension of the driftdiffusion model to decision tasks with a circular decision space.

• We developed a custom JAGS module that allows for the implementations of the CDDM in a Bayesian framework.

• We demonstrate the adequacy of our CDDM module in simulation studies.

• We illustrate the advantages of our Bayesian implementation by revisiting publicly available data from a continuous orientation judgment task.

Decisions on a circle

Color identification

Spatial location of sound

Cyclic events

The Circular Drift Diffusion Model (CDDM)

- Nondecision time (τ): Visual encoding and motor control.
- Boundary radius (η): Criterion to be reached to make a decision.

- Nondecision time (τ): Visual encoding and motor control.
- Boundary radius (η): Criterion to be reached to make a decision.
- Mean step-size on x-axis (μ_x).
- Mean step-size on Y-axis (μ_y).

$$\mu = \{\mu_x, \mu_y\}$$

- Nondecision time (τ): Visual encoding and motor control.
- Boundary radius (η): Criterion to be reached to make a decision.
- Drift angle (θ): Direction of stimulus evidence.
- Drift length (δ): Speed of information processing .

Implementing the CDDM module in JAGS

CDDM module in JAGS

Polar coordinate implementation

```
for (i in 1:N) {
     X[1:2,i] ~ dcddmpolar(delta, theta, eta, tau)
}
```

Cartesian coordinate implementation

```
for (i in 1:N) {
     X[1:2,i] ~ dcddmcartn(mux, muy, eta, tau)
}
```

https://github.com/joachimvandekerckhove/jags-cddm

 $\eta \in \{1.5, 2.0, 2.5\}$ $au \in \{0.1, 0.2, 0.3\}$

Cartesian implementation

$$\mu_x \in \{-0.5, 0, 0.5, 1\}$$
 $\mu_y \in \{-1, -0.5, 0, 0.5\}$

Polar implementation

 $\delta \in \{0.01, 1.0, 2.0\}$ $heta \in \{0.0, 2.0, 4.0\}$

Application on real data

Open data

• Data presented by Peter Kvam (2019).

• Perceptual study where participants produce continuous orientation judgments.

- Task manipulations:
 - 1. Difficulty levels.
 - 2. Accuracy vs Speed instructions.
 - 3. Cue reliability variations.

Task description

• **Stimuli:** A sequence of Gabor patches sampled from a normal distribution.

• Main instruction: Indicate the true mean orientation of the patches presented by clicking any point on the circumference of a circle.

• 2 x 2 factorial design: Speed vs Accuracy - Cued vs Uncued presentation.

• Three levels of difficulty: 15, 30 and 45 degrees of standard deviation.

Research questions

1.- Are participants more cautious to respond when they are instructed to prioritize accuracy over speed? (η)

2.- Does information processing speed change with task difficulty? (δ)

3.- Does the consistency of the stimulus information decrease as a function of task difficulty?

4.- Do different degreees of cue deflections have an impact on how likely participants are to ignore the cue while making a decision?

$$= \begin{cases} \exp(\mu_i^{\eta} + \gamma_i^{\eta}/2) & \text{if } s = \text{accuracy} \\ \exp(\mu_i^{\eta} - \gamma_i^{\eta}/2) & \text{if } s = \text{speed} \end{cases}$$

$$\sim \text{ uniform}(0, \min y_{i1})$$

$$\sim \text{ Gaussian}(0, 1)$$

$$\sim \text{ uniform}(0, 1)$$

$$\sim \text{ log-Gaussian}\left(\mu_d^{\delta}, \frac{1}{(\sigma^{\delta})^2}\right)$$

$$\sim \text{ Gaussian}(0, 1)$$

$$\sim \text{ uniform}(0, 4)$$

$$\sim \text{ log-Gaussian}\left(\mu_d^{\kappa}, \frac{1}{(\sigma^{\kappa})^2}\right)$$

$$\sim \text{ Gaussian}(0, 1)$$

$$\sim \text{ Gaussian}(0, 1)$$

$$\approx \text{ Gaussian}(0, 1)$$

$$\approx \left\{ \exp\left(\mu_{ia}^{\omega} + \frac{\gamma_{ia}^{\omega}}{2}\right) & \text{if } c > 0 \\ \exp\left(\mu_{ia}^{\omega} - \frac{\gamma_{ia}^{\omega}}{2}\right) & \text{if } c < 0 \\ \exp\left(\mu_{ia}^{\omega}\right) & \text{if } c = 0 \end{cases}$$

$$\sim \text{ Bernoulli}(\omega_{ic})$$

$$\sim \text{ uniform }(0, 1)$$

$$\sim \left\{ \begin{array}{c} \text{ Gaussian}(\phi_{isdct}, \kappa_{id}) & \text{if } z_{isdct} = 0 \\ \text{ Gaussian}(q_{isdct}, \beta_i \kappa_{id}) & \text{if } z_{isdct} = 1 \\ \sim \text{ CDDM}_{\circ}(\delta_{id}, \eta_{is}, \tau_i, \operatorname{mod}(\theta_{isdct}, 2\pi)) \end{array} \right\}$$

Are participants more cautious to respond in the Accuracy condition?

Does information processing speed decrease as task difficulty increases?

Does the consistency of the stimulus information change as a function of task difficulty?

Do different cue deflections change how likely participants are to ignore the cue orientation while making a decision?

Future work

Discrete extension of the CDDM

Discrete extension of the CDDM

Acknowledgements

Thank you!