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EZ-DDM
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The EZ-diffusion model for two-choice response time tasks takes mean response time, the variance of re-
sponse time, and response accuracy as inputs. The model transforms these data via three simple equations to
produce unique values for the gquality of information, response conservativeness, and nondecision time. This
transformation of observed data in terms of unobserved variables addresses the speed-accuracy trade-off and
allows an unambiguous quantification of performance differences in two-choice response time tasks. The EZ-
diffusion model can be applied to data-sparse situations to facilitate individual subject analysis. We studied the
performance of the EZ-diffusion model in terms of parameter recovery and robustness against misspecification
by using Monte Carlo simulations. The EZ model was also applied to a real-world data set.
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Forward equations

Let g = exp(—av).
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Inverse equations:

Let L = log(i.)

1-R
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Bayesian implementation of the EZ-DDM

e The EZ-DDM provides deterministic estimators o, &, 7.

e We require probabilistic estimators and a distribution over data that is
conditional on the model parameters.

Solution:

e Use the sampling distributions of the summary statistics in the EZDDM to build
a proxy model

e The proxy model allows for hierarchical Bayesian extensions.
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Sampling distributions for the EZ summary statistics

Accuracy rate: RT Variance (V')

T' ~ Binomial (R, N) vV .
(N — 1)7 ~ Chi-squared (IV — 1)
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RT Mean(M):
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As T' becomes sufficiently large:
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The proxy model

T ~ Binomial (R, N )
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Hypothesis testing example

Data: Shape perception study by
Vandekerckhove, Panis, and
Wagemans (2007)

Task: Are the images shown on
screen same or different?

Design: A B
e Change occurs? Yes/ No
e Change type: Changein
concavity vs convexity
e Change quality: Qualitative vs C D

Quantitative change
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The model

We fit a multiple linear regression on v

( ” pred

v ~ Normal ,O)

So that for every condition k, the predicted drift rate is determined by the
configuration of three dummy variables A, B and C.

red

Condition Change (A) Change quality (B) Change type (C)
B = 0 Qualitative ~ C=0 Convexity

C =0 Convexity

B = 0 Qualitative  [SGREEeIgle=1YIxY;

C = 1 Concavity

A=0No
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Posterior Density
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Estimation time: 4.05s (N = 5,760, iter = 1000,and burnin = 100),
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Metaregression example

Data: Numerosity study by Ratcliff
and Rouder, 1998.

Task: Is the overall brightness of
pixel arrays displayed on the
monitor “high” or “low"?

Design:

e Instruction conditions: Speed
vs Accuracy.

o Pixel array levels: 16 "more
white" and 16 "more black"
levels.
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The model

e An effect ( 8) of instruction (i.e., ;) on a.

a ~ Normal(u, + 8X;, 04)

e Anonlinear regression on v using instruction (i.e., ;) and stimulus
configuration (i.e., x,) as predictors.

Qis = ®(B1 + 52| Xs| + B3 X;| X))

red
v =y + BoQis + BaXi

pred
Vi s ™~ Normal(ui,s ,Oy)
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Effect of instruction on the drift rate
Effect on slope | Main effect
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Estimation time: 8.58s (N = 7,889, iter = 1000,andburnin = 100).
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Drift rate
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Closing remarks

e This proxy model facilitates the Bayesian implementation of the EZDDM,
which can be extended hierarchical to account for the structure of the
data.

e The EZBHDDM can be implemented in any probabilistic programming
language.

e The EZBHDDM is hyper-efficient: it takes only seconds to run!

e The EZBHDDM is able to recover hierarchical and regression parameters.
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