NDIVIDUAL DIFFERENCES IN THE GENERAL SPEED COMPONENT OF RESPONSE TIMES

Adriana Felisa Chávez De la Peña¹, Jeffrey N. Rouder¹ and Joachim Vandekerckhove¹

Main argument:

- 1. Difference scores computed across different cognitive control tasks show weak correlations.
- 2. In contrast, the general speed observed in cognitive control tasks has a robust uni-factorial solution.
- 3. Our goal is to extend the PCA analysis to determine whether univariance is found in the shift, scale, or shape parameters of RT distributions.

No	Tasks	Part	Trials	Cite
1	10	263	144-360	Rey-Mermet et al. (2018)
2	8	522	72 - 280	Enkavi et al. (2019)
3	3(2)	100	720	Hedge et al. (2018)
4	4	42	640-720	Hedge et al. (2018)
5	3	121	93 - 194	Von Bastian et al. (2015)
6	3	178	475 - 760	Whitehead et al. (2018)
$\overline{7}$	3	194	516 - 1187	Whitehead et al. (2018)
8	3	210	568-600	Whitehead et al. (2018)
9	2	38	504	Pratte et al. (2010)

Data sets explored

Cognitive control difference scores

Figure 1. Individual differences in difference scores (Incongruent-Congruent). Left panel: Correlation matrices. Right panel: Scree plots.

General speed has a unifactorial structure

Figure 2. Individual differences in general speed (mean RT). Left panel: Correlation matrices. Right panel: Scree plots.

¹Department of Cognitive Sciences, University of California Irvine

Ex-Gaussian distribution fit

We applied this model to a subset of 7 tasks and 100 participants from a larger data set [1].

Figure 4. Individual posterior samples for μ_{ij} (left), ν_{ij} (center) and σ_{ij} (right). On all panels, change of colors separate participants, with a same-color line per task. We only show results for 30 random participants.

Figure 5. We conducted an iterative PCA revision for n = 1000 random posterior samples. The three panels present the overlapping Screeplots obtained across each iteration (left: μ_{ij} , center: ν_{ij} and right: σ_{ij}). The thin lines correspond to the average result.

Correlational structure of Ex-Gaussian parameters

Fig 6. Distribution of between-task correlations computed across n = 1000 random posterior samples. The first two panels present the correlations obtained in terms of μ_{+j} and ν_{+j} , and the last two panels show the results for σ_{ij} .

1v2

1v3

Figure 7. Correlations between the posterior mean computed across the μ_{ij} , ν_{ij} and σ_{ij} parameters estimated across different data sets.

1v2

1v2

1v3

Acknowledgements

This project was supported by NSF #1850849 and #2051186. Github: https://github.com/Adrifelcha/RT-struct_and_dist. Contact info: achavezd@uci.edu Lab website: cidlab.com

