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Main argument:

1. Difference scores used to study cognitive control show weak correlations
across tasks and poor test-retest reliability.

2. In contrast, across many data sets, the general-speed component of re-
sponse times in cognitive control tasks has a robust uni-factorial solution.

3. Our goal is to extend the PCA analysis to determine whether univariance is
found in the shift, scale, or shape parameters of RT distributions.

1. Cognitive control difference scores

Cognitive control is the ability to ignore irrelevant information and suppress au-
tomatic responses. Tasks designed to study it use as dependent measure the
difference in the mean response times (RTs) observed between conditions that
either require cognitive control or not.

Given the large number and variety of tasks used to study cognitive control, one
may ask:

Are there robust individual differences in cognitive control?

We re-analyzed the data reported across five different studies where different
cognitive control tasks were applied, (see Table 1).

Table 1. A summary of the number of tasks, participants and trials included in the data sets revisited in this project.

Figure 1. Exploring individual differences in difference scores. Left panel: Correlation matrices of the difference
scores across tasks for each of the data sets revisited. Right panel: Scree plots for the difference scores across

tasks for each data set.

2. General-speed has a unifactorial structure

Figure 2. Exploring individual differences in general-speed. Left panel: Correlation matrices of the mean simple-RT across tasks
for each of the data sets revisited. Right panel: Scree plots for the mean simple-RT across tasks for each data set.

3. Fitting an Ex-Gaussian distribution

The RT observed on any trial k for every participant i doing task j is modeled as a draw
from an ExGaussian distribution, so that:

Yijk ∼ Normal(µij + τijk, σ
2
ij)

τijk ∼ Exp
(

1

νij

)
We applied this model to a subset of 7 tasks and 100 participants from a larger data set [1].

Figure 3. Individual posterior samples for µij (left), νij (center) and σij (right). On all panels, change of colors separate participants,
with a same-color line per task. We only show results for 30 random participants.

Figure 4. We conducted an iterative PCA revision for n = 1000 random posterior samples. The three panels present the overlapping
Screeplots obtained across each iteration (left: µij, center: νij and right: σij). The thin lines correspond to the average result.

Figure 5. Distribution of Rhats computed across chains while sampling the hereby mentioned model.

These are preliminary results

Future/Current steps: Cognitive Latent
Variable Modeling

We’re working on a Cognitive Latent Variable Model where either µij, νij or σij,
all parameters of a participant-by-task ExGaussian distribution, is assumed to
have a factorial composition. So that:

yijk ∼ Normal(µij + τijk, σ
2
ij)

τijk ∼ Exp
(

1

νij

)

µij or σijk or νijk = λ0 +
(
ϕ1i × λ1j

)
+ · · · +

(
ϕFi × λFj

)
where λ0 is the Intercept, ϕ1i represents the first factor score for participant i
weighted by λ1j that captures the weight of task j on this first factor.

µ[I×J ] or ν[I×J ] or σ[I×J ] =Φ[I×F ]Λ[F×J ]

In order to guarantee that the model is identified, we enforce the following re-
strictions:

1. All elements of Φ are assumed to be normally distributed (i.e. they vary
freely).

2. The Λ matrix is sparse, with only a few non-zero elements, some of which
will be fixed to 1.
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