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OVERVIEW
1. The Simple DDM is a three-parameter

model that accounts for choice and RT data
using a Wiener likelihood function.

2. The EZ-DDM provides parameter estimators
from summary statistics.

3. We present a probabilistic formulation of the
EZ-DDM based on the sampling distribu-
tions of these summary statistics, allowing
for a hierarchical EZ-DDM that can be im-
plemented in a Bayesian framework.

THE EZ-DDM
The Simple DDM describes choices and RTs in bi-
nary choice tasks as the result of a hidden evidence
accumulation process defined by three parameters:

Parameter Interpretation

Drift rate ν Evidence accumulation rate
Boundary α Distance between response bounds

Nondecision time τ Encoding and motor control time

y ∼ Wiener (ν, α, τ)

Figure 1. Illustration of the Simple DDM.

Using the method of moments, we can express the
accuracy rate (Apred

mean), and the mean and variance of
the RTs (RT

pred
mean and RT

pred
var ) as closed-form functions

of the model parameters [3].
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The EZ-DDM formulation results from inverting
equations 1, 2, and 3 to obtain parameter estima-
tors from these same summary statistics.

BAYESIAN HIERARCHICAL EZDDM
We present a proxy model for hierarchical
Bayesian EZ-DDMs built from what we know
about the sampling distributions of RT

obs
mean and

RT
obs
var, and by casting A

pred
mean as the probability of a

correct response used to model the total number of
correct responses observed (Aobs

total) using a binomial
distribution:
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(4)
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 . (6)

Together with equations 1, 2, and 3, equations 4,
5, and 6 present generative distributions for choice
and RT summary statistics. This allows us to build
hyper-efficient Bayesian hierarchical extensions
of the EZ-DDM that can be implemented on any
probabilistic programming language (e.g., JAGS,
STAN, etc.), and which take only seconds to run!

COGNITIVE PSYCHOMETRICS

Cognitive models use parameters to formalize
psychological assumptions about the processes
generating the data observed. Cognitive psycho-
metrics proposes the use of cognitive models as
psychological measurement tools. This endeavor
benefits from building Bayesian hierarchical exten-
sions that explain variability across individual pa-
rameters as a function of covariates and predictors
of interest. For example, we can model the data yi,p

from participant p in trial i as:
yi,p ∼ Wiener(νp, αp, τp)

with individual αp and τp sampled from
population-level distributions:

αp ∼ Normal
(
µα, σ

2
α

)
τp ∼ Normal

(
µτ , σ

2
τ

)
and a meta-regression on νp that allows us to ex-
plore the effect β of a covariate of interest xp.

νp ∼ Normal
(
µν + βxp, σ

2
ν

)

APPLIED EXAMPLE 1
Task description: We analyze data from one partic-
ipant in a study [1] where participants had to judge
the brightness of pixel arrays as “high” or “low.”

• 33 stimulus configuration levels controlling
the proportion of black vs. white pixels.

• 2 instruction conditions: Speed vs. Accuracy.
Background: The instruction condition is known to
have an effect on the boundary parameter α.
Question: Does the instruction condition have an
effect on the drift rate ν?
Model: We use a nonlinear regression model to ex-
plore the effects of instruction Xi and stimulus con-
figuration Zs on νi,s:

Si,s = Φ(β1 + β2|Zs|+ β3Xi|Zs|)

ν
pred
i,s = µν + β0Si,s + β4Xi

νi,s ∼ Normal(νpred
i,s , σδ)

Results and conclusions:
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Figure 2. Results from Applied Example 1. Detailed description below.

1. The instruction condition has a main effect and an
effect on the drift rate slope (Fig. 2, top panel).

2. The predicted and recovered drift rate per diffi-
culty level changes across instruction conditions
(Fig. 2, bottom panel).

This model took approximately 8 seconds to run on 7,802 trials.

APPLIED EXAMPLE 2
Task description: We analyze data from a shape
perception study [2] where participants had to in-
dicate whether two irregular shapes interspersed
with a mask were the “same” or “different.” The ex-
perimental design used three factors to define five
experimental conditions k ∈ {1 . . . 5}.

Change (A) Change quality (B) Change type (C)
k = 1 Yes (A = 1) Qualitative (B = 0) Convexity (C = 0)
k = 2 Yes (A = 1) Quantitative (B = 1) Convexity (C = 0)
k = 3 Yes (A = 1) Qualitative (B = 0) Concavity (C = 1)
k = 4 Yes (A = 1) Quantitative (B = 1) Concavity (C = 1)
k = 5 No (A = 0) n/a n/a

Background: Changes in concavity are known to be
easier to detect that changes in convexity.
Question: Does the quality of the change mediate
the effect of change type?
Model: We use a multiple linear regression model
to explore the differences across νk.

ν
pred
k = µ+Ak(γ1Bk + γ2Ck + γ3BkCk) + (1−Ak)γ4

νk ∼ Normal(νpred
k , σν).

Results and conclusions:
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Figure 3. Results from Applied Example 2. Detailed description below.

1. We confirm that changes in concavity are easier to
detect than changes in convexity (Fig. 3, top left).

2. We find that qualitative changes are easier to de-
tect than quantitative changes.

3. There is an interaction between change type and
quality. The difference in difficulty between a
qualitative and quantitative change is larger in
changes in concavity.

This model took approximately 4 seconds to run on 5,760 trials.
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