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INTRODUCTION

The EZ-DDM is a simplified, closed-form version of
the three-parameter drift diffusion model that en-
ables rapid parameter estimation from choice and
RT summary statistics (i.e., the accuracy rate (Apred

mean),
the mean RT (RT

pred
mean), and the RT variance (RT

pred
var )),

through a method of moments [2].
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In previous work [1], we have shown that casting
A

pred

mean as the binomial rate for the correct response
count (Aobs

total), along with the known sampling dis-
tributions of RT

obs

mean and RT
obs

var, allow us to build a
hyper-efficient proxy likelihood for the EZ-DDM,
using Equations 1–3.
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This likelihood can support a hierarchical Bayesian
EZ-DDM that can be easily implemented in any
probabilistic programming language and takes only
a few seconds to run!

We can extend this with metaregression structures
to explore covariate effects, for example:

νp ∼ Normal(µν + βxp, σ
2
ν). (7)

Here, β captures the effect of covariate xp on the
drift rate νp, enabling for Bayesian hypothesis test-
ing against β = 0.

HYPOTHESIS TESTING • SIMULATION STUDY

• We simulated trial data from a Wiener process
with a within-subject t test design on the drift
rate parameter (Eq. 7 with xp ∈ {0, 1}).

• We generated 1,000 data sets for every com-
bination of number of trials per condition
T ∈ {20, 40, 80, 160, 320} by number of simu-
lated participants P ∈ {20, 40, 80, 160} by true
fixed effect size β ∈ {0.0, 0.1, 0.2, 0.4}.

• We also added contaminant data.
• We conducted the simulation study across four

conditions, defined by a 2× 2 factorial design:

– Data type: Clean vs. contaminated.
– Summary strategy: EZ statistics (mean and

variance of RTs) vs. Robust statistics (median
and IQR-derived variance).

DATA TYPE
• We contaminated 5% of each participant’s trials.
• Used a coin flip to choose one of two contamina-

tion types: zi ∼ Bernoulli(0.5):
– RT noise: Add uniform random noise to the

observed RT.

– Decision noise: Replace the trial with a
Wiener draw with ν = 0.

ROBUST STATISTICS
• EZ-DDM relies on mean and variance of RTs
• Both statistics are sensitive to outliers
• We replace these with ‘robust’ alternatives:

– Median (P50) instead of mean
– Interquartile range approximates variance

σ2 ≈
(
P75 − P25

1.349

)2

RESULTS

0.5

0.6

0.7

0.8

0.9

1
P = 20 P = 40 P = 80

EZ x Clean
EZ x Outliers
Robust x Clean
Robust x Outliers

P = 160

T
 =

 3
20

0.5

0.6

0.7

0.8

0.9

1

T
 =

 1
60

0.5

0.6

0.7

0.8

0.9

1

T
 =

 8
0

0.5

0.6

0.7

0.8

0.9

1

T
 =

 4
0

0.5

0.6

0.7

0.8

0.9

1

β = 0.1 β = 0.2 β = 0.4 β = 0.1 β = 0.2 β = 0.4 β = 0.1 β = 0.2 β = 0.4 β = 0.1 β = 0.2 β = 0.4

T
 =

 2
0

A
re

a 
U

nd
er

 C
ur

ve
 (

A
U

C
)

Figure 1: Simulation study results. Each panel shows the AUC (vertical axis) for different true effect sizes (horizontal
axis) and simulation conditions (different lines), across different trial and participant sizes (rows and columns).

• Figure 1 shows the Area Under the Curve (AUC)
derived from a Receiver Operating Characteristic
curve for every fixed effect level β, and simula-
tion condition across all combinations of sample
P and trial T sizes.

• The AUC is a metric for the diagnostic accuracy
of a Bayes Factor test, quantifying its ability to
correctly distinguish between a true effect (β ̸= 0)
and a null effect (β = 0).

• The underlying statistical test is a Bayes Factor
calculated with respect to a Region of Practi-
cal Equivalence, quantifying the evidence for or
against the presence of an effect.

Key findings
• The performance of all methods improves with

more observations. However, the number of par-
ticipants is more important than the number of
trials (e.g., all highlighted cells have the same to-
tal number of observations).

• The ‘Robust’ implementation performs similarly
to the ‘EZ’ implementation for clean data.

• The ‘EZ’ standard implementation is vulnerable
to outliers; its AUC drops with contaminated
data.

• The ‘Robust’ implementation is not affected by
contamination.

CONTACT INFORMATION
Web cidlab.com
Email achavezd@uci.edu
Github github.com/Adrifelcha/ez-robust
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